

S-PACT GmbH phone: +49 241 9569 9812
Burtscheider Str. 1 fax: +49 241 4354 4308
52064 Aachen e-mail: support@s-pact.com
Germany

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

PEAXACT AppServer
User Manual

Version 5.9
2023-12-10

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

© COPYRIGHT 2023 by S-PACT GmbH

The software described in this document is furnished under a license agreement. The software
may be used only under the terms of the license agreement.

CONTENTS 3

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

CONTENTS
1 Quick Start .. 4

1.1 What is PEAXACT AppServer?.. 4

1.2 Getting Help ... 4

1.3 Installation & License Activation .. 4

1.4 Before You Start ... 8

2 Application Programming Interface (API) .. 10

2.1 .NET API ... 10

2.2 COM API ... 22

2.3 Programming Examples ... 28

3 Custom Interfaces ... 34

3.1 OPUS Process... 34

3.2 HoloPro .. 38

4 Trouble Shooting ... 41

1 - QUICK START 4

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

1 QUICK START
1.1 What is PEAXACT AppServer?

The PEAXACT AppServer gives third-party applications access to PEAXACT analysis methods by
means of an application programming interface (API). The API is available as

• .NET Framework assembly

• COM component (Component Object Model)

Any application supporting one of these standards will be able to programmatically integrate
PEAXACT as a back-end analyzer.

In addition, the AppServer provides ready-to-use custom interfaces for third-party software.

1.2 Getting Help

User Manual

This user manual documents a certain version of the PEAXACT AppServer. You can find the
version number and release date on the title page.

We are continuously working on improving the manual. The latest document version is
distributed as PDF file with each PEAXACT software update. The file is in subdirectory Help of the
PEAXACT installation directory.

Technical Support

Technical Support can be contacted by:

• E-mail to support@s-pact.com

• Web form at www.s-pact.com/support

Note: A subscription to the S-PACT Software Maintenance Service (SMS) is required to
be eligible for technical support. The first year of SMS is included with new licenses.

1.3 Installation & License Activation
1.3.1 System Requirements

• 64-bit version of Microsoft Windows 7 SP1 or Windows 10

• Any Intel or AMD x64 processor

• 5 GB of disk space

• 4 GB RAM

• Microsoft .NET Framework 4.5 or newer

mailto:support@s-pact.com
http://www.s-pact.com/support

1 - QUICK START 5

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

1.3.2 Licensing

PEAXACT software is furnished under a license agreement. The software may be used only under
the terms of the license agreement.

The PEAXACT AppServer can be installed and operated on a given number of designated
computers, provided it is only operated locally (not remotely). The number of simultaneous users
is not limited. For the full and legally valid conditions please refer to the license agreement
document.

1.3.3 Installation

Step 1: Before You Install

• Make sure your computer fulfills the system requirements.

• When upgrading an existing installation, visit www.peaxact.com/whatsnew and read the
upgrade notes and compatibility considerations.

• Make sure you have administrator privileges to perform the installation.

• Make sure your license is valid for the major version number. If you do not have a license
yet you can get a free trial license or purchase a license after installation.

Step 2: Install PEAXACT

• Download the PEAXACT Installer from www.peaxact.com/download

Note: The installer's file name is PeaxactInstaller_<major>.<minor>_win64.exe.
Different major versions can be installed side-by-side, e.g., versions 5 and 4. The
installer upgrades earlier installations of the same major version.

Online Installation

• Run the PEAXACT Installer and follow the setup instructions. Additional runtime packages
are downloaded and installed automatically if detected missing.

Offline Installation

• If you are planning to install PEAXACT on a computer without internet access, you must
download additional runtime packages in advance from
www.peaxact.com/runtime

• Save all installer files to a folder on a portable drive. Do not rename files.

• At the offline computer, run the PEAXACT Installer and follow the setup instructions.
Runtime packages are installed automatically if detected missing.

Step 3: After Installation

• After a new product installation continue with License Activation.

http://www.peaxact.com/whatsnew
http://www.peaxact.com/download
http://www.peaxact.com/runtime

1 - QUICK START 6

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

• After upgrading an existing installation check the upgrade notes at
www.peaxact.com/whatsnew for further upgrade steps.

• Consider configuring the AppServer service.

1.3.4 License Activation

Note: A license access code may be required for activation. Codes are provided to end-
users or designated license administrators after a license purchase or trial request.
Note: If you perform the activation with administrator privileges, licenses will be
activated per-machine, i.e., for all Windows users. Otherwise, licenses will be activated
per-user, i.e., for the logged-on user. Per-machine takes precedence over per-user.

Select PEAXACT 5 > Activate PEAXACT from the Windows start menu to open the
License Activation Dialog. Then select the PEAXACT AppServer product.

Online Activation

To activate PEAXACT over the internet:

• Select Download License… from the drop-down list.

• Enter your license access code and click OK. Then close the dialog.

Offline Activation

To activate PEAXACT on a computer without internet you must download the license using
another device.

• Make a note of the Host ID displayed in the License Activation Dialog.

http://www.peaxact.com/whatsnew

1 - QUICK START 7

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

• On a device with internet, visit www.peaxact.com/activate.

• Sign in to the License Center with your license access code.

• Enter a description (e.g., the computer name) and the Host ID, then click Add.

• Click Download license and save the license file to a portable device.

• In the License Activation Dialog, select Import License… and load the license file. Then
close the dialog.

Activation per API

The PEAXACT AppServer can also be activated programmatically using the application
programming interface.

1.3.5 Configuration of the AppServer service

The AppServer is hosted by a Windows service named PeaxactAppServerService5 (PEAXACT
AppServer 5) which gets installed by the PEAXACT Installer and automatically starts with
Windows. The service can be started with optional parameters.

Start Parameters

-eager Fully initializes the AppServer when the service gets started. Without
the parameter, the AppServer gets initialized when it is used for the
first time, then causing a latency of 30 to 60 seconds. Consider using
this start parameter if you are using the AppServer regularly and
want to avoid the latency.

http://www.peaxact.com/activate

1 - QUICK START 8

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

-logfile "<filePath>" Enables file logging. <filePath> must be the path to a log file. Use
this start parameter for debugging purposes only!

One-time Start with Parameters

From the Windows start menu run services.msc to open the Windows Services Console, then
double-click on PEAXACT AppServer 5.

First click Stop, then edit Start parameters, then click Start followed by OK. The parameters
entered here are not saved; they are passed to the service on a one-time basis.

Always Start with Parameters

From the Windows start menu run regedit to open the Windows Registry Editor. Browse to
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\PeaxactAppServerService5, then double
click the ImagePath subkey and edit the string value to include start parameters, e.g.,
"C:\Program Files\S-PACT\PEAXACT 5\AppServer\

Service\PeaxactAppServerService.exe" -eager
Restart the service for the changes to take effect. The service will now always be started with
these parameters, e.g., when the service is started automatically on Windows startup.

1.4 Before You Start

Before you access the AppServer for the first time you should test whether everything is installed
correctly by running a diagnosis program. Click the Windows start menu and select Programs >
PEAXACT 5 > Diagnosis of PEAXACT AppServer.

1 - QUICK START 9

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

The diagnosis program performs some tests and suggests possible solutions in case of problems.
You should fix all problems before you proceed. Typical problems include:

• MATLAB Runtime is not installed correctly.

• Required DLL files are not registered correctly.

• The AppServer service is not running.

You could run the diagnosis program at any time to check whether the interface still works
correctly and to reveal possible errors.

2 - APPLICATION PROGRAMMING INTERFACE (API) 10

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

2 APPLICATION PROGRAMMING INTERFACE

(API)
2.1 .NET API

The .NET API is a set of classes contained in a design-time assembly you would compile and link
against when building your own managed assemblies. The assembly file is located at

<INSTALLPATH>\AppServer\NET4.5\PeaxactAppServer.dll

Before you can use it, you need to reference the assembly in your Visual Studio project. Add the
following <ItemGroup> block to your project file and replace <INSTALLPATH> with the path of the
PEAXACT installation directory. This adds a reference to the assembly and will copy dependent
native libraries to the output directory when the project is compiled.

<ItemGroup>

 <Reference Include="PeaxactAppServer">

 <HintPath><INSTALLPATH>\AppServer\NET4.5\PeaxactAppServer.dll</HintPath>

 </Reference>

 <None Include="<INSTALLPATH>\AppServer\NET4.5\grpc_csharp_ext.*.dll">

 <CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>

 </None>

</ItemGroup>

Target Framework

The assembly targets .NET Framework 4.5 but is compatible with .NET Core and .NET 5+.

Dependencies

The .NET API requires MATLAB Runtime 9.6 to be installed. Also, the Windows service that hosts
the AppServer must be installed and running. The service is installed and started automatically by
the PEAXACT Installer, or can be installed and started manually by executing the files:

<INSTALLPATH>\AppServer\Service\InstallService.vbs

<INSTALLPATH>\AppServer\Service\StartService.vbs

Deployment

When packaging your application, include all files from the directories:
<INSTALLPATH>\AppServer\NET4.5
<INSTALLPATH>\AppServer\Service

When deploying you application, make sure to install MATLAB Runtime 9.6 and install
<INSTALLPATH>\AppServer\Service\PeaxactAppServerService.exe as a Windows service.

As an alternative to packaging and deploying the AppServer with your own application, simply
use the PEAXACT Installer to set up the AppServer. In this case, consider binding your application

2 - APPLICATION PROGRAMMING INTERFACE (API) 11

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

to the newest installed version of the AppServer, allowing you and users of your application to
update the AppServer independently of your application (see below).

Backward Compatibility

New versions of the .NET API will be backward compatible. Therefore, it is recommended that
you do not bind your application to a specific version of the AppServer assembly but instead bind
dynamically to the newest version installed on the target computer. See Section 2.3.5 for a
programming example.

Support for Asynchronous Analyses

The .NET API provides methods to perform analyses asynchronously. However, note that
analyses are executed internally by the MATLAB Runtime which is single-threaded, i.e., if you run
multiple asynchronous operations in parallel, they still get executed one after another.

Exception Handling

The .NET API throws exceptions of predefined .NET exception types with specific error messages.
Use exception handling code (try/catch blocks) appropriately for all method calls.

2.1.2 Analyzer Class

The Analyzer is the main class of the API, representing an isolated environment where analyses
execute. The Analyzer provides methods to add models and use them to perform analyses of
samples.

Notes

When creating the first Analyzer instance, expect a latency of 30 to 60 seconds for the
initialization of the AppServer. Once initialized, no further latency is to be expected. Consider
configuring the AppServer service to initialize the AppServer when the service starts during
Windows startup.

Consider creating Analyzer objects once at the beginning of your application for each model (or
set of models) and keep the objects alive for as long as you want to perform analyses with them.
This is because adding models involves loading potentially large files and might be slow.

Constructors

Analyzer() Initializes a new instance of the Analyzer class with DefaultOptions.

Analyzer(AnalyzerOptions options)

Initializes a new instance of the Analyzer class with custom options.
options: The options.

2 - APPLICATION PROGRAMMING INTERFACE (API) 12

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

Properties

DefaultOptions : AnalyzerOptions

Gets or sets default options to be used when calling the Analyzer()
constructor without custom options.

Models : IEnumerable<Model>

Gets the models added by AddModel().

Methods

AddModel(string filePath) : void

Adds a model.
filePath: The path to a PEAXACT model file (extension PXM) to be
added. It can also be the path to a PEAXACT session file (extension
PXS) containing any number of models to be added.

PerformAnalysisPreview(AnalysisType type) : IEnumerable<AnalysisResult>

Performs a preview of an analysis, returning the same results as
PerformAnalysis(), but without values. This is helpful to find out in
advance the number and names of results, as well as the hierarchical
structure of sub-results. If needed, use the Traverse() extension
method for IEnumerable<AnalysisResult> to convert the hierarchical
result sequence into a flat sequence.
type: The type of the analysis. Consider using type Auto so that it is
determined by the added models.

PerformAnalysis(AnalysisType type, Sample sample) : IEnumerable<AnalysisResult>

Performs an analysis of a sample and returns type-dependent
results. The sample gets processed by all added models that match
the specified analysis type. If needed, use the Traverse() extension
method for IEnumerable<AnalysisResult> to convert the hierarchical
result sequence into a flat sequence.
type: The type of the analysis. Consider using type Auto so that it is
determined by the added models.
sample: The sample to analyze.

PerformPeakPicking(Sample sample, PeakPickingOptions options) : PeakPickingResults
Performs peak picking of a sample, applying pretreatments of the
first added model (if any).
sample: The sample to analyze.
options: The options for peak detection.

PerformMcr(IEnumerable<Sample> samples, McrOptions options) : McrResults

Performs Multivariate Curve Resolution of a set of samples, applying
pretreatments of the first added model (if any).
samples: The collection of samples to analyze.
options: Options for the MCR algorithm.

2 - APPLICATION PROGRAMMING INTERFACE (API) 13

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

PerformMcrAsync(IEnumerable<Sample> samples, McrOptions options,

CancellationToken cancellationToken,

IProgress<int> progress) : Task<McrResults>

Asynchronously performs Multivariate Curve Resolution of a set of
samples, applying pretreatments of the first added model (if any).
Returns a task object representing the asynchronous operation.
samples: The collection of samples to analyze.
options: Options for the MCR algorithm.
cancellationToken: The token to monitor for cancellation requests.
progress: The provider for progress updates.

PerformHmfa(IEnumerable<Sample> samples, HmfaOptions options) : HmfaResults

Performs Hard Modeling Factor Analysis of a set of samples, using
the first added model.
samples: The collection of samples to analyze.
options: Options for the HMFA algorithm.

PerformHmfaAsync(IEnumerable<Sample> samples, HmfaOptions options, CancellationToken

cancellationToken,

IProgress<int> progress) : Task<HmfaResults>

Asynchronously performs Hard Modeling Factor Analysis of a set of
samples, using the first added model. Returns a task object
representing the asynchronous operation.
samples: The collection of samples to analyze.
options: Options for the HMFA algorithm.
cancellationToken: The token to monitor for cancellation requests.
progress: The provider for progress updates.

2.1.3 AnalyzerOptions Class

The AnalyzerOptions class provides license information to the Analyzer class. You could either
pass the options to the Analyzer(AnalyzerOptions) constructor or assign the options to the static
property Analyzer.DefaultOptions and use the default constructor (recommended).

Constructors

AnalyzerOptions() Initializes a new instance of the AnalyzerOptions class.

Properties

LicenseFilePath : string Gets or sets the path to a PEAXACT license file (extension LIC). Use
null or an empty string for auto-detection, in which case the
Windows Registry is searched for a license file path registered by the
PEAXACT License Activation Dialog.

LicensePassword : string Gets or sets the license password required for protected licenses.

2 - APPLICATION PROGRAMMING INTERFACE (API) 14

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

2.1.4 Model Class

The Model is a read-only object providing model specifications. It is useful to determine the kinds
of analyses a model can be used for:

• All models can be used for Analyzer.PerformPeakPicking(), Analyzer.PerformMcr(), and
Analyzer.PerformAnalyis with AnalysisType.Auto.

• Models with IntegrationModelComponentNames are suitable for Analyzer.PerformAnalysis()
with AnalysisType.Integration.

• Models with HardModelComponentNames are suitable for Analyzer.PerformAnalysis() with
AnalysisType.ComponentFitting or Analyzer.PerformHmfa.

• Models with CalibrationModelComponentNames are suitable for Analyzer.PerformAnalysis()
with AnalysisType.Prediction.

• Models with ClassificationModelComponentNames are suitable for
Analyzer.PerformAnalysis() with AnalysisType.Identification.

• Models with CustomModelComponentNames are suitable for Analyzer.PerformAnalysis() with
AnalysisType.Custom.

Properties

Path : string Gets the model file path.

Checksum : string Gets the SHA-1 checksum of the model file.
Note: This member was added in v5.7.

Signature : string Gets information about the model's digital signature.

Description : string Gets the description of the model as provided by the creator of the
model.

IntegrationModelComponentNames : string[]

Gets the names of Integration Model Components.

HardModelComponentNames : string[]

Gets the names of Hard Model Components.

CalibrationModelComponentNames : string[]

Gets the names of Calibration Model Components.

ClassificationModelComponentNames : string[]

Gets the names of Classification Model Components.

ClassificationModelClassNames : string[]

Gets the names of the Classification Model classes.

CustomModelComponentNames : string[]

Gets the names of Custom Model Components.

2 - APPLICATION PROGRAMMING INTERFACE (API) 15

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

2.1.5 Sample Class

The Sample represents measured data of a physical sample. The Sample object at least contains the
file path to a measured spectrum or chromatogram. It may also contain the x-values and y-values
of the measured signal itself as well as names and values of additional features associated with
the sample, e.g., timestamp, temperature, or meta information.

The Sample class uses a URI (uniform resource identifier) to identify a resource in a file. The URI is
a string that consists of an absolute or relative file path plus #ID, e.g.:
C:\Data\SpectrumFile.spc#1. The #ID-part of the URI is optional. It can be used to refer to a
certain resource in a file that contains multiple resources. The format of the ID depends on the file
type, but typically is just a number. The default is 1.

Constructors

Sample(string uri) Initializes a new instance of the Sample class.
uri: The URI of the sample. It must refer to an existing resource file
from which to load x-values and y-values.

Sample(string uri, double[] x, double[] y)

Initializes a new instance of the Sample class with x-values and y-
values.
uri: The URI of the sample. It could refer to an existing resource file,
but when x- and y-values are provided it could also be an arbitrary
file path because the file will never be accessed.
x: The x-values of the sample.
y: The y-values of the sample.
Note: When x and y are null, values will be read from uri.

Sample(string uri, double[] x, double[] y, Dictionary<string, object> features)

Initializes a new instance of the Sample class with x-values, y-values,
and additional features.
uri: The URI of the sample.
x: The x-values of the sample.
y: The y-values of the sample.
features: The names and values of additional features associated
with the sample. Values can be of type double or string.

2 - APPLICATION PROGRAMMING INTERFACE (API) 16

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

Sample(string uri, double[] x, double[] y, double[] i)

Initializes a new instance of the Sample class with x-values and
complex y-values.
uri: The URI of the sample. It could refer to an existing resource file,
but when x- and y-values are provided it could also be an arbitrary
file path because the file will never be accessed.
x: The x-values of the sample.
y: The real part of complex y-values of the sample.
i: The imaginary part of complex y-values (null = missing).
Note: This member was added in v5.5.

Sample(string uri, double[] x, double[] y, double[] i, Dictionary<string, object>

features)

Initializes a new instance of the Sample class with x-values, complex
y-values, and additional features.
uri: The URI of the sample.
x: The x-values of the sample.
y: The real part of complex y-values of the sample.
i: The imaginary part of complex y-values (null = missing).
features: The names and values of additional features associated
with the sample. Values can be of type double or string.
Note: This member was added in v5.5.

Properties

Uri : string Gets the URI of the sample.

X : double[] Gets the x-values of the sample.

Y : double[] Gets the y-values of the sample.

I : double[] Gets the optional imaginary part of complex y-values.
Note: This member was added in v5.5.

Features : Dictionary<string, object>
Gets the names and values of features associated with the sample.
Values can be of type double or string.

2.1.6 AnalysisResult Class

An AnalysisResult object represents a result of an analysis. It may contain other results (sub-
results) depending on the type of analysis. A sequence of such hierarchical results is returned by
Analyzer.PerformAnalysisPreview() and Analyzer.PerformAnalysis(). The Traverse() extension
method for IEnumerable<AnalysisResult> provides a convenient way to convert the sequence of
hierarchical results into a flat sequence, and the FullName property represents a convenient
alternative over the Name property when working with flat sequences.

2 - APPLICATION PROGRAMMING INTERFACE (API) 17

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

Properties

Type : AnalysisResultType Gets the result type.

Name : string Gets the result name.

Value : object Gets the numeric or categorical result value. If IsNumeric is true, the
value is of type double, otherwise of type string.

IsNumeric : bool Gets whether Value is numeric (true) or categorical (false).

Children : IEnumerable<AnalysisResult>

Gets the sequence of sub-results.

FullName : string Gets the full name, which consists of the joined names from the top-
level result to the result you want, separated by " – ".
Note: This member was added in v5.4.

2.1.7 AnalysisType Enumeration

Specifies the type of analysis performed by Analyzer.PerformAnalysisPreview() and
Analyzer.PerformAnalysis(). Consider using type Auto so that it is determined by the added
models.

Fields

Auto = -1 Analysis as specified by added models, or, if not specified, the first
analysis for which a model returns results, in the order: Custom,
Identification, Prediction, ComponentFitting, Integration
Note: This member was added in v5.4.

Custom = 0 Analysis of custom results as configured in a Custom Model.

Integration = 1 Integration of the measured signal as configured in an Integration
Model.

ComponentFitting = 2 Fitting of the measured signal as configured in a Hard Model.

Prediction = 3 Prediction of feature values as configured in a Calibration Model.

Identification = 4 Identification of class values as configured in a Classification Model.

2.1.8 AnalysisResultType Enumeration

Specifies the type of a result returned by Analyzer.PerformAnalysisPreview() and
Analyzer.PerformAnalysis().

2 - APPLICATION PROGRAMMING INTERFACE (API) 18

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

Note: More result types may be added in the future. Make sure your application can
deal with unknown types so that your code will continue to work when new types get
added.

Fields

CustomNumeric = 0 Numeric value calculated by a Custom Model.

CustomCategorical = 1 Categorical value calculated by a Custom Model.

IntegrationComponentArea = 10

Component area calculated by an Integration Model.

ComponentFittingWeight = 20

Component weight of a fitted Hard Model.

ComponentFittingArea = 21

Component area of a fitted Hard Model.

ComponentFittingRmsResiduals = 22

RMS residuals of a fitted Hard Model.

PredictionValue = 30 Predicted value calculated by a Calibration Model.

PredictionStandardUncertainty = 31

Standard uncertainty of the predicted value.

PredictionExpandedUncertainty = 32

Expanded uncertainty of the predicted value for a 95% level of
confidence.

PredictionRmsResiduals = 33

RMS residuals, either of a fitted Hard Model (HM regression) or of a
factor model (PLS regression).

PredictionRmsResidualsOutlierProbability = 34

Probability for a value of type PredictionRmsResiduals being an
outlier.

PredictionMahalanobisDistance = 35

Mahalanobis distance of a sample to training samples, calculated by
a factor model (PLS regression).

PredictionMahalanobisDistanceOutlierProbability = 36

Probability for a value of type PredictionMahalanobisDistance being
an outlier.

IdentificationClassName = 40

Identified class name calculated by a Classification Model.

2 - APPLICATION PROGRAMMING INTERFACE (API) 19

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

IdentificationClassNumber = 41

Identified class number calculated by a Classification Model. The
number can be used as a (one-based) index into the combined array
of all possible class names from
Analyzer.Models[…].ClassificationModelClassNames.

IdentificationClassProbability = 42

Probability for a value of type IdentificationClassName being the
actual class.

IdentificationMahalanobisDistance = 43

Mahalanobis distance of a sample to training samples, calculated by
a Classification Model.

IdentificationMahalanobisDistanceOutlierProbability = 44

Probability for a value of type IdentificationMahalanobisDistance
being an outlier.

2.1.9 PeakPickingOptions Class

Options used by Analyzer.PerformPeakPicking().

Constructor

PeakPickingOptions() Initializes a new instance of the PeakPickingOptions class.

Properties

MinimumPeakHeight : double?

Gets or sets the minimum height for peak detection. null = auto-
detect (default).

2.1.10 PeakPickingResults Class

Results returned by Analyzer.PerformPeakPicking().

Properties

SampleUri : string Gets the URI of the analyzed sample.

MinimumPeakHeight : double

Gets the minimum height of peaks used for the analysis. This is
either the user-specified input value or an auto-detected value.

PeakIndices : double[] Gets one-based indices into XData or YData of found peaks.

2 - APPLICATION PROGRAMMING INTERFACE (API) 20

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

PeakPositions : double[] Gets x-values of found peaks.

PeakIntensities : double[] Gets y-values of found peaks.

XData : double[] Gets x-values of the sample (after pre-treatments if any) used for the
analysis.

YData : double[] Gets y-values of the sample (after pre-treatments if any) used for the
analysis.

2.1.11 McrOptions Class

Options used by Analyzer.PerformMcr().

Constructors

McrOptions(int numComponents)

Initializes a new instance of the McrOptions class.
numComponents: The number of components to identify.

Properties

NumComponents : int Gets or sets the number of components to identify from the sample
set.

C0 : double[,] Gets or sets the optional 2D array of initial concentrations. Rows
correspond to samples; columns correspond to components. If C0 is
null, concentrations are initialized with previous results (if available).
If C0 is an empty array, concentrations are initialized implicitly
(reset).

ToleranceRmse : double Gets or sets the criterion for stopping the MCR-ALS algorithm when
progress between iterations drops below the tolerance (default = 1e-
5).

MaxIterations : int Gets or sets the criterion for stopping the MCR-ALS algorithm after a
maximum number of iterations (default = 100).

MaxUnsuccessfulAttempts : int

Gets or sets the criterion for stopping the MCR-ALS algorithm after a
maximum number of unsuccessful iterations (default = 20).

IsNonnegativeC : bool Gets or sets whether the non-negativity constraint for component
concentrations is active (default = false).

2 - APPLICATION PROGRAMMING INTERFACE (API) 21

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

IsNonnegativeS : bool Gets or sets whether the non-negativity constraint for component
spectra is active (default = false).

IsUnimodalC : bool Gets or sets whether the unimodality constraint for component
concentrations is active (default = false).

IsClosureC : bool Gets or sets whether the closure constraint for component
concentrations is active (default = false).

2.1.12 McrResults Classs

Results returned by Analyzer.PerformMcr().

Properties

SampleUris : string[] Gets the URIs of the analyzed samples.

ComponentNames : string[] Gets the automatically generated names of identified components.

S : double[,] Gets the spectral intensities (y-values) of identified components.
Rows correspond to XData; columns correspond to ComponentNames.

C : double[,] Gets the concentrations of identified components. Rows correspond
to XData; columns correspond to ComponentNames.

RmsResiduals : double[] Gets the root mean square (RMS) spectral residuals for each sample.
Residuals are differences between measured and reconstructed
signal.

R2 : double Gets the fraction of the variance of the measured signal which is
explained by the reconstructed signal.

XData : double[] Gets x-values of the sample (after pre-treatments if any) used for the
analysis.

2.1.13 HmfaOptions Class

Options used by Analyzer.PerformHmfa().

Constructors

HmfaOptions(int numComponents)

Initializes a new instance of the HmfaOptions class.
numComponents: The number of components to identify.

2 - APPLICATION PROGRAMMING INTERFACE (API) 22

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

Properties

NumComponents : int Gets or sets the number of components to identify from the sample
set.

IsClosureC : bool Gets or sets whether the closure constraint for component
concentrations is active (default = false).

2.1.14 HmfaResults Class

Results returned by Analyzer.PerformHmfa().

Properties

SampleUris : string[] Gets the URIs of the analyzed samples.

ComponentNames : string[] Gets the automatically generated names of identified components.

S : double[,] Gets the spectral intensities (y-values) of identified components.
Rows correspond to XData; columns correspond to ComponentNames.

C : double[,] Gets the concentrations of identified components. Rows correspond
to XData; columns correspond to ComponentNames.

RmsResiduals : double[] Gets the root mean square (RMS) spectral residuals for each sample.
Residuals are differences between measured and reconstructed
signal.

R2 : double Gets the fraction of the variance of the measured signal which is
explained by the reconstructed signal.

XData : double[] Gets x-values of the sample (after pre-treatments if any) used for the
analysis.

2.2 COM API

The COM API is a set of classes contained in a COM-visible assembly you would use in scripts and
applications that are COM-compliant, e.g., VBScript, Visual Basic, Excel, or LabVIEW. The
assembly file is located at

<INSTALLPATH>\AppServer\COM\PeaxactAppServerCom.dll

Before you can use the COM API, COM classes must be registered in the Windows Registry. The
classes are registered automatically by the PEAXACT Installer, or can be registered manually by
executing the file:

2 - APPLICATION PROGRAMMING INTERFACE (API) 23

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

<INSTALLPATH>\AppServer\COM\Register.vbs

Dependencies

The .NET API requires MATLAB Runtime 9.6 to be installed. Also, the Windows service that hosts
the AppServer must be installed and running. The service is installed and started automatically by
the PEAXACT Installer, or can be installed and started manually by executing the files:

<INSTALLPATH>\AppServer\Service\InstallService.vbs

<INSTALLPATH>\AppServer\Service\StartService.vbs

ProgID

The COM API exposes the IAnalyzer class interface and the corresponding Analyzer class which is
the only class you can create objects from. The Analyzer class can be referenced by its ProgId.

Version-specific ProgId: PEAXACT.Analyzer.5
Version-independent ProgId: PEAXACT.Analyzer

In Visual Basic, e.g., you would create a new instance of the Analyzer class as follows:

Set analyzer = CreateObject("PEAXACT.Analyzer.5")

Backward Compatibility

Within the same major version, new minor versions of the COM API will be backward compatible.
New major versions of the COM API are subject to changes and may break your application.
Therefore, it is highly recommended that you bind your application to a specific version of the
AppServer DLL. You can do this by referencing the version-specific ProgId.

Dynamic Binding vs. Static Binding

The AppServer DLL only allows for dynamic binding (late binding) to assure that your application
does not break when new methods or properties are added to the API in the future.

Exception Handling

The COM API throws exceptions with specific error messages. Use exception handling code
appropriately for all method calls.

2.2.2 Analyzer Class

The Analyzer is the main class of the API, representing an isolated environment where analyses
execute. The Analyzer provides methods to add models and use them to perform analyses of
samples.

2 - APPLICATION PROGRAMMING INTERFACE (API) 24

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

Notes

When creating the first Analyzer instance, expect a latency of 30 to 60 seconds for the
initialization of the AppServer. Once initialized, no further latency is to be expected. Consider
configuring the AppServer service to initialize the AppServer when the service starts during
Windows startup.

Consider creating Analyzer objects once at the beginning of your application for each model (or
set of models) and keep the objects alive for as long as you want to perform analyses with them.
This is because adding models involves loading potentially large files and might be slow.

Constructors

Analyzer() Initializes a new instance of the Analyzer class.

Properties

Models : Model[] Gets the models added by AddModel().

Methods

AddModel(string filePath) : void

Adds a model.
filePath: The path to a PEAXACT model file (extension PXM) to be
added. It can also be the path to a PEAXACT session file (extension
PXS) containing any number of models to be added.

CreateSample(string uri, double[] x, double[] y, params object[] features) : Sample

Returns a new instance of a Sample object.
uri: The URI of the sample. If x and y are null, it must refer to an
existing resource file from which to load x-values and y-values.
Otherwise, it could be an arbitrary file path.
x: The numeric array of x-values, or null to read from uri.
y: The numeric array of y-values, or null to read from uri.
features: Optional array of alternating names and values of features
associated with the sample. Names must be of type string; values
can be of type double or string.

PerformAnalysisPreview(string analysisType) : AnalysisResult[]

Performs a preview of an analysis, returning the same results as
PerformAnalysis(), but without values. This is helpful to find out in
advance the number and names of results, as well as the hierarchical
structure of sub-results.
analysisType: The name of the analysis type. See AnalysisType for a
list of possible names.

2 - APPLICATION PROGRAMMING INTERFACE (API) 25

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

PerformAnalysis(string analysisType, Sample sample) : AnalysisResult[]

Performs an analysis of a sample and returns analysisType-
dependent results. The sample gets processed by all added models
that match the specified analysisType.
analysisType: The name of the analysis type. See AnalysisType for a
list of possible names. Consider using type "Auto" so that it is
determined by the added models.
sample: The sample to analyze.

PerformPeakPicking(Sample sample, object minimumPeakHeight) : PeakPickingResults
Performs peak picking of a sample, applying pretreatments of the
first added model (if any).
sample: The sample to analyze.
minimumPeakHeight: The minimum height for peak detection (null =
auto-detect = default).

PerformMcr(Sample[] samples, int numComp, params object[] options) : McrResults

Performs Multivariate Curve Resolution of a set of samples, applying
pretreatments of the first added model (if any).
samples: The collection of samples to analyze.
numComp: The number of components to identify from the sample set.
options: Additional options for the MCR algorithm as name/value-
pairs. Names can be: C0, ToleranceRmse, MaxIterations,
MaxUnsuccessfulAttempts, IsNonnegativeC, IsNonnegativeS,
IsUnimodalC, IsClosureC. See McrOptions for the meaning and
appropriate values.

PerformHmfa(Sample[] samples, int numComp, params object[] options) : HmfaResults

Performs Hard Modeling Factor Analysis of a set of samples, using
the first added model.
numComp: The number of components to identify from the sample set.
options: Additional options for the HMFA algorithm as name/value-
pairs. Names can be: IsClosureC. See HmfaOptions for the meaning
and appropriate values.

2.2.3 Model Class

This class is equivalent to the Model class of the .NET API.

2.2.4 Sample Class

The Sample represents measured data of a physical sample. The Sample object at least contains the
file path to a measured spectrum or chromatogram. It may also contain the x-values and y-values
of the measured signal itself as well as names and values of additional features associated with
the sample, e.g., timestamp, temperature, or meta information.

2 - APPLICATION PROGRAMMING INTERFACE (API) 26

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

The Sample class uses an URI (uniform resource identifier) to identify a resource in a file. The URI is
a string that consists of an absolute or relative file path plus #ID, e.g.:
C:\Data\SpectrumFile.spc#1. The #ID-part of the URI is optional. It can be used to refer to a
certain resource in a file that contains multiple resources. The format of the ID depends on the file
type, but typically is just a number. The default is 1.

Constructors

See Analyzer.CreateSample().

Properties

Uri : string Gets the URI of the sample.

X : double[] Gets the x-values of the sample.

Y : double[] Gets the y-values of the sample.

Features : object[] Gets the array of alternating names and values of features
associated with the sample.

2.2.5 AnalysisResult Class

An AnalysisResult object represents a result of an analysis that may contain other results (sub-
results) depending on the type of analysis. A sequence of such hierarchical results is returned by
Analyzer.PerformAnalysisPreview() and Analyzer.PerformAnalysis().

Properties

Type : int Gets the result type. See AnalysisResultType for a list of possible
result type numbers.

Name : string Gets the result name.

Value : object Gets the numeric or categorical result value. If IsNumeric is true, the
value is of type double, otherwise of type string.

IsNumeric : bool Gets whether Value is numeric (true) or categorical (false).

Children : AnalysisResult[]

Gets the array of sub-results.

FullName : string Gets the full name, which consists of the joined names from the top-
level result to the result you want, separated by " – ".

2 - APPLICATION PROGRAMMING INTERFACE (API) 27

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

2.2.6 PeakPickingResults Class

This class is equivalent to the PeakPickingResults class of the .NET API.

2.2.7 McrResults Class

This class is equivalent to the McrResults class of the .NET API.

2.2.8 HmfaResults Class

This class is equivalent to the HmfaResults class of the .NET API.

2 - APPLICATION PROGRAMMING INTERFACE (API) 28

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

2.3 Programming Examples
2.3.1 Using the .NET API in C#

This example demonstrates how to use the .NET API in C#. The program uses a model, displays a
preview of available result names, performs the analysis on a measured sample, and displays
result values.

using System;

using System.Linq;

using S_PACT.PEAXACT;

namespace Examples

{

 class PerformAnalysisExample

 {

 private Analyzer analyzer;

 private AnalysisType analysisType;

 static void Main(string[] args)

 {

 new PerformAnalysisExample().Run();

 Console.WriteLine("Press any key to continue.");

 Console.ReadKey();

 }

 private void Run()

 {

 // Do things that only need to be done once.

 Initialize();

 // Analyze samples.

 Analyze();

 }

 private void Initialize()

 {

 // Create a new analyzer with options.

 Analyzer.DefaultOptions = new AnalyzerOptions()

 {

 LicenseFilePath = @"C:\license.lic"

 };

 analyzer = new Analyzer();

 // Add one or more models to the analyzer.

 analyzer.AddModel(@"C:\user\model.pxm");

 //analyzer.AddModel(@"C:\user\model2.pxm");

 // Define the analysis type.

 analysisType = AnalysisType.Auto;

 // Optional: Preview names of analysis results.

 var results = analyzer.PerformAnalysisPreview(analysisType);

 // "results" is a sequence of hierarchically structured objects.

 // The first level of results corresponds to components (main results).

 // Each main result may have none to multiple levels of sub-results.

 if (!results.Any()) throw new Exception("Models provide no results.");

 // Loop through main results.

 foreach (var mainResult in results)

 {

 Console.WriteLine(mainResult.Name);

 // Traverse all levels of sub-results (depth-first).

 foreach (var subResult in mainResult.Children.Traverse())

2 - APPLICATION PROGRAMMING INTERFACE (API) 29

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

 {

 // FullName consists of all names from mainResult to subResult.

 Console.WriteLine(subResult.FullName);

 }

 }

 }

 private void Analyze()

 {

 // Get the sample to analyze.

 Sample sample = CreateSample();

 // Analyze the sample.

 var results = analyzer.PerformAnalysis(analysisType, sample);

 // Traverse all results, display values.

 foreach (var result in results.Traverse())

 {

 // Numeric or categorical result value?

 if (result.IsNumeric) Console.WriteLine((double)result.Value);

 else Console.WriteLine((string)result.Value);

 }

 }

 private Sample CreateSample()

 {

 // This method creates a Sample object from known x and y values.

 int nx = 1000; // e.g., 1000 data points

 double[] x = new double[nx]; // e.g., wavenumbers

 double[] y = new double[nx]; // intensities

 // Populate x and y.

 // ...

 // Create the sample.

 // The URI can be arbitrary when x and y are provided.

 return new Sample("dummy.xyz", x, y);

 }

 }

}

2.3.2 Using the .NET API in Python

This example demonstrates how to use the .NET API in Python. The content of the example is
identical to that from the previous section.

Note: This example requires pythonnet. See https://pypi.org/project/pythonnet.

import clr

clr.AddReference('C:\Path\To\PeaxactAppServer.dll')

from S_PACT.PEAXACT import Analyzer, AnalyzerOptions, AnalysisType, Sample

class PerformAnalysisExample:

 def run(self):

 # Do things that only need to be done once.

 self.initialize()

 # Analyze samples.

 self.analyze();

 def initialize(self):

 # Create a new analyzer with options.

 options = AnalyzerOptions()

 options.LicenseFilePath = 'C:\license.lic'

 Analyzer.DefaultOptions = options

 self.analyzer = Analyzer()

https://pypi.org/project/pythonnet

2 - APPLICATION PROGRAMMING INTERFACE (API) 30

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

 # Add one or more models to the analyzer.

 self.analyzer.AddModel('C:\user\model.pxm');

 #self.analyzer.AddModel('C:\user\model2.pxm');

 # Define the analysis type.

 self.analysis_type = AnalysisType.Auto;

 # Optional: Preview names of analysis results.

 results = self.analyzer.PerformAnalysisPreview(self.analysis_type)

 # "results" is a sequence of hierarchically structured objects.

 # The first level of results corresponds to components (main results).

 # Each main result may have none to multiple levels of sub-results.

 if not results:

 raise Exception('Models provide no results.');

 # Loop through main results.

 for mainResult in results:

 print(mainResult.Name)

 # Traverse all levels of sub-results (depth-first).

 for subResult in traverse(mainResult.Children):

 # FullName consists of all names from mainResult to subResult.

 print(subResult.FullName)

 def analyze(self):

 # Get the sample to analyze.

 sample = self.create_sample()

 # Analyze the sample.

 results = self.analyzer.PerformAnalysis(self.analysis_type, sample)

 # Traverse all results, display values.

 for result in traverse(results):

 # Numeric or categorical result value?

 if result.IsNumeric:

 print(result.Value) # result.Value is a float

 else:

 print(result.Value) # result.Value is a string

 def create_sample(self):

 # This method creates a Sample object from known x and y values.

 x = []

 y = []

 # Populate x and y.

 # ...

 # Create the sample.

 # The URI can be arbitrary when x and y are provided.

 return Sample('dummy.xyz', x, y)

Converts a hierarchical sequence into a flat sequence (depth-first traversal).

def traverse(results):

 combined_results = []

 for result in results:

 combined_results += [result] + traverse(result.Children)

 return combined_results

if __name__ == '__main__':

 PerformAnalysisExample().run()

2 - APPLICATION PROGRAMMING INTERFACE (API) 31

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

2.3.3 Using the COM API in VB Script

This example demonstrates how to call the PEAXACT AppServer from Visual Basic Script (VBS).
VBS only supports the COM API. The script uses an Integration Model to calculate component
areas of a gas spectrum and displays results.

' Create a new analyzer.

Set analyzer = CreateObject("PEAXACT.Analyzer.5")

' Add a model to the analyzer.

analyzer.AddModel "c:\model\syngas.pxm"

' Create the sample to analyze.

Set sample = analyzer.CreateSample("C:\data\syngas.csv#1", null, null)

' Perform the integration according to model specifications.

' Note that (sample) is enclosed in parentheses to pass it "byval".

results = analyzer.PerformAnalysis("Integration", (sample))

' Display results.

For Each result In results

 Wscript.Echo result.Name & " = " & result.Value

Next

2.3.4 Using the .NET API in MATLAB

This example demonstrates how to call the .NET API from MATLAB (R2009a or newer). The script
uses an Integration Model to calculate component areas of a gas spectrum and displays results.

% Load the AppServer DLL

appServerPath = 'C:\Program Files\S-PACT\PEAXACT 5\AppServer\NET4.5';

NET.addAssembly(fullfile(appServerPath, 'PeaxactAppServer.dll'));

import S_PACT.PEAXACT.*;

% Create a new analyzer.

analyzer = Analyzer();

% Add a model to the analyzer.

analyzer.AddModel('c:\model\syngas.pxm');

% Create the sample to analyze.

sample = Sample('C:\data\syngas.csv#1');

% Perform the integration according to model specifications.

results = analyzer.PerformAnalysis(AnalysisType.Integration, sample)

% Display results.

for iResult = 0:results.Count - 1

 result = results.Item(iResult);

 fprintf('%s = %f\n', result.Name, result.Value);

end

2 - APPLICATION PROGRAMMING INTERFACE (API) 32

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

2.3.5 Dynamically bind to future versions of the
AppServer assembly (.NET API)

This example demonstrates how you could make your.NET application independent of a specific
version of the AppServer and instead bind to the newest AppServer assembly installed on the
target computer. This is possible because new versions of the .NET API will be backward
compatible.

Note: It is highly recommended NOT to bind to a specific version of the AppServer
assembly because you would need to upgrade your application each time a new
PEAXACT version gets released.

using Microsoft.Win32;

using S_PACT.PEAXACT;

using System;

using System.IO;

using System.Linq;

using System.Reflection;

namespace Examples

{

 class DynamicBindingExample

 {

 static DynamicBindingExample()

 {

 // Add assembly resolver within a static constructor.

 AppDomain.CurrentDomain.AssemblyResolve +=

 new ResolveEventHandler(MyResolveEventHandler);

 }

 static void Main(string[] args)

 {

 // Create an Analyzer, resolve assembly if necessary.

 Analyzer analyzer = new Analyzer();

 }

 private static Assembly MyResolveEventHandler(object s, ResolveEventArgs e)

 {

 // Return if assembly has been loaded already.

 Assembly assembly = AppDomain.CurrentDomain.GetAssemblies()

 .FirstOrDefault(x => x.FullName.StartsWith(e.Name));

 if (assembly != null) return assembly;

 // Return if not asking for PeaxactAppServer.

 if (!e.Name.StartsWith("PeaxactAppServer")) return null;

 // Search registry for highest installed version.

 RegistryKey key = RegistryKey.OpenBaseKey(RegistryHive.LocalMachine,

 RegistryView.Registry64).OpenSubKey(@"SOFTWARE\S-PACT");

 Version maxVersion = new Version(0, 0);

 string candidatePath = "", validPath = "";

 foreach (string keyName in key.GetSubKeyNames()

 .Where(x => x.StartsWith("PEAXACT AppServer")))

 {

 try

 {

 if (!Version.TryParse((string)key.OpenSubKey(keyName)

 ?.GetValue("Version"), out Version version)) continue;

 if (version <= maxVersion) continue;

 maxVersion = version;

2 - APPLICATION PROGRAMMING INTERFACE (API) 33

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

 candidatePath = Path.Combine((string)key.OpenSubKey(keyName)

 ?.GetValue("InstallPath"), "PeaxactAppServer.dll");

 }

 catch { }

 if (File.Exists(candidatePath)) validPath = candidatePath;

 }

 // Load assembly.

 if (validPath != "") return Assembly.LoadFrom(validPath);

 return null;

 }

 }

}

3 - CUSTOM INTERFACES 34

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

3 CUSTOM INTERFACES
3.1 OPUS Process
3.1.1 Prerequisites

Software Requirements

• OPUS 6.5 or higher

• package PROCESS for OPUS

OPUS 7 Workaround

The following workaround is necessary for OPUS version 7 to work with PEAXACT:

1) Open the Windows Explorer and open the OPUS installation directory.
2) Rename file Calo.dll to Calo.dll_hidden or any other name, such that the file will not be

found be OPUS anymore.

Note: This workaround disables OPUS support for Unscrambler.

Additional Files

These instructions refer to a special OPUS script file named PeaxactComponentAnalysis.obs. The
file is used as a placeholder during the setup of an OPUS PROCESS scenario and does nothing so
far. The file is located at <INSTALLPATH>\AppServer\COM\OPUS.

3.1.2 OPUS Configuration

3) Run the diagnosis program first to test whether the PEAXACT AppServer is installed and
registered correctly.

4) Configure a new OPUS PROCESS scenario file (.obs) with the OPUS scenario browser.
5) Each measurement point requires a "No Evaluation" data channel for triggering the

measurement (must be the first data channel in each case).
6) Add data channels with data evaluation by script PeaxactComponentAnalysis.obs.
7) Modify the scenario script according to instructions in the next section.
8) Run the process script in OPUS.

3.1.3 Modifying OPUS scenario file

Important Notes

• Set-up the whole OPUS PROCESS scenario first using the OPUS scenario browser.

• Run and test the scenario before making manual modifications to the scenario file.

3 - CUSTOM INTERFACES 35

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

• Once the scenario script is modified manually, the scenario should not be changed with
the OPUS scenario browser anymore because this would overwrite all manual
modifications. Again, make sure to finish all steps in the scenario browser first.

• Use the OPUS script editor (Menu File > Open > *.obs) to modify the scenario script as
follows below. If you copy and paste text from a PDF version of this document, copy each
page separately because this will preserve line breaks and prevents from copying headers
and footers.

At the beginning of the script, after Option Explicit add:
' Added by S-PACT %%

Dim pxAnalyzer

' %%

At the beginning of sub-procedure Form_OnLoad() add:
' Added by S-PACT %%

Set pxAnalyzer = CreateObject("PEAXACT.Analyzer.5")

pxAnalyzer.AddModel "<ModelFileName>"

' %%

Customize <ModelFileName> to load your models

• Substitute <ModelFileName> with the path to a PEAXACT model file. For instance, the line
would then read:
pxAnalyzer.AddModel "C:\Models\CyclohexaneModel.pxm"

• If you want to add more models, duplicate the pxAnalyzer.AddModel line.

3 - CUSTOM INTERFACES 36

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

At the very end of the script, add:
' Added by S-PACT %%

Function PeaxactAnalysis(ByVal analysisType, ByVal block, ByVal Id)

 Dim vntResult, iPoint, nPoints, firstX, lastX, path, file, URI

 Dim xData(), yData(0), pxSample, results, result, resultValue

 vntResult = Form.OpusRequest("BINARY")

 vntResult = Form.OpusRequest("FLOAT_MODE")

 vntResult = Form.OpusRequest("FLOATCONV_MODE ON")

 vntResult = Form.OpusRequest("DATA_POINTS")

 vntResult = Form.OpusRequest("READ_FROM_BLOCK " & block)

 path = split(Form.OpusRequest("READ_PARAMETER PAT"), chr(10))(1)

 file = split(Form.OpusRequest("READ_PARAMETER NAM"), chr(10))(1)

 nPoints = split(Form.OpusRequest("READ_PARAMETER NPT"), chr(10))(1)

 firstX = split(Form.OpusRequest("READ_PARAMETER FXV"), chr(10))(1)

 lastX = split(Form.OpusRequest("READ_PARAMETER LXV"), chr(10))(1)

 ReDim xData(nPoints-1) 'Get xData

 For iPoint = 0 To nPoints-1

 xData(iPoint) = CDbl(firstX + iPoint * (lastX-firstX)/(nPoints-1))

 Next

 vntResult = Form.OpusRequestData("READ_DATA", yData) 'Get yData

 For iPoint = 0 To nPoints-1

 yData(iPoint) = CDbl(yData(iPoint+1)) 'Index shift

 Next

 ReDim Preserve yData(nPoints-1)

 URI = path & chr(92) & file & "#" & block & "-1" 'Get sample

 Set pxSample = pxAnalyzer.CreateSample(URI, xData, yData)

 Select Case UCase(analysisType) 'Perform analysis

 Case "CUSTOM","INTEGRATION","COMPONENTFITTING","PREDICTION","IDENTIFICATION"

 results = pxAnalyzer.PerformAnalysis(analysisType, (pxSample))

 Set result = FindResultById(results, Id)

 resultValue = result.Value

 Case "PREDICTIONOUTLIERIHM"

 results = pxAnalyzer.PerformAnalysis("Prediction", (pxSample))

 Set result = FindResultById(results, Id)

 Set result = FindResultByType(result.Children, 34)

 resultValue = result.Value

 Case "PREDICTIONOUTLIERPLS"

 results = pxAnalyzer.PerformAnalysis("Prediction", (pxSample))

 Set result = FindResultById(results, Id)

 Set result = FindResultByType(result.Children, 36)

 resultValue = result.Value

 Case Else : MsgBox "Invalid analysisType: " & analysisType

 End Select

 PeaxactAnalysis = vbLf & vbLf & CStr(resultValue) ' Return result

End Function

Function FindResultById(ByRef results, ByVal Id)

 Dim result

 If VarType(Id) = 8 Then ' string

 For Each result In results

 If result.Name = Id Then Set FindResultById = result : Exit Function

 Next

 Msgbox "Debugging required. Invalid result name: " & Id

 Else

 Set FindResultById = results(Id-1) : Exit Function

 End If

End Function

Function FindResultByType(ByRef results, ByVal resultType)

 Dim result

 For Each result In results

 If result.Type = resultType Then Set FindResultByType = result : Exit Function

 Next

 Msgbox "Debugging required. Invalid result type: " & resultType

End Function

' %%

3 - CUSTOM INTERFACES 37

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

Search and replace the placeholder script

• Press CTRL+F3 to open the text search dialog.

• Search for PeaxactComponentAnalysis.obs (ignore any matches found in the first line).

• A matching line should start with vntResult = Form.OpusRequest("VBScript

• Replace the whole line by

' Modified by S-PACT %%%

vntResult = PeaxactAnalysis("<AnalysisType>", "<Block>", "<ComponentName>")

' %%

• Substitute <AnalysisType> with one of the following types:

• Custom – calculation of custom result values.

• Integration – calculation of Integration Model Component area.

• ComponentFitting – calculation of Hard Model Component weight.

• Prediction – calculation of Calibration Model Component value.

• Identification – calculation of Classification Model Component value.

• PredictionOutlierPLS – calculates the probability (p-value) for a spectral outlier
towards a PLS model; requires a PLS calibration.

• PredictionOutlierIHM – calculates the probability (p-value) for a spectral outlier
towards a Hard Model; requires a HM calibration.

• Substitute <Block> with the desired file block, e.g., AB.

• Substitute <ComponentName> depending on your choice of <AnalysisType>:

• Custom: substitute with the name of a custom result.

• Integration: substitute with the name of an Integration Model Component.

• ComponentFitting: substitute with the name of a Hard Model Component.

• Prediction, PredictionOutlierPLS, PredictionOutlierIHM: substitute with the name
of a Calibration Model Component. Be careful not to accidentally use names of linked
components. See the model summary report:

• Identification: substitute with the name of a Classification Model Component.

• For instance, the line would now read:
vntResult = PeaxactAnalysis("Prediction", "AB", "Cyclohexane")

Note: <ComponentName> can also be the component's index. The index is consecutively
numbered across all added models. For instance, the line would read:
vntResult = PeaxactAnalysis("Prediction", "AB", 1)
Do not enclose the index in double quotes! Use the index instead of the name when
multiple components have identical names.

• Repeat this step until all occurrences of PeaxactComponentAnalysis.obs are replaced.

3 - CUSTOM INTERFACES 38

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

3.2 HoloPro
3.2.1 Prerequisites

Software Requirements

• HoloPro 3.2.0.6 to 3.3.0.3 or

• HoloPro 3.3.0.11 and newer

3.2.2 Configuration

1) Run the diagnosis program first to test whether the PEAXACT AppServer is installed and
registered correctly.

2) Start HoloPro and open the Channel Settings (menu Settings > Acquisition Setup)

3) Tick Multivariate in the Data Analysis Settings Panel, then click the Multivariate
Prediction Setup button

4) At the top of the next window, select a channel, then click the Add Components button

3 - CUSTOM INTERFACES 39

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

5) From the Method Type list select New Custom Method and enter PEAXACT (or select
PEAXACT if it has already been added before).

6) Browse for a calibrated model file and select components. Close with OK.

Note: Adding the first model may take a while (because the PEAXACT AppServer gets
started in the background).
Note: You can also browse for a PEAXACT session file to load multiple models from the
session.

3 - CUSTOM INTERFACES 40

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

7) You can add more components from other models to the same channel, or you can add
components to other channels by repeating steps 4 to 6.

8) After closing all setup windows with OK you may start measuring. The analysis of a
measured sample takes place after each measurement. Results will be displayed in the
main window of HoloPro.

4 - TROUBLE SHOOTING 41

S o l u t i o n s f o r P r o c e s s A n a l y t i c s & C o n t r o l T e c h n o l o g y

4 TROUBLE SHOOTING

Problems with the COM API

Symptoms
You cannot access the PEAXACT COM API from your third-party application.

Resolution
In case of any problems with the PEAXACT COM API you should try the following

• Reboot the computer if you have not done this after you have installed PEAXACT.

• Run the diagnosis program. After starting the program, it performs several tests. In case of
errors a possible solution is suggested. You must fix all problems before you can use the
interface correctly.

• Under some circumstances the diagnosis program crashes (throwing a Windows error)
when the COM DLL is registered incorrectly. If this happens, you must register the DLL
manually by executing the file

<INSTALLPATH>\AppServer\COM\Register.vbs

Note that administrator privileges are required to execute the file. Afterwards, run the
diagnosis again.

Problems with the HoloPro Custom Interface

Symptoms
You get an error when trying to add PEAXACT as new Custom Method in HoloPro.

Resolution

• Make sure you do not use HoloPro versions 3.3.0.7 to 3.3.0.10. These versions are known to
cause problems with PEAXACT. You could use an earlier version, e.g., 3.3.0.3 or a later
version, e.g., 3.3.0.11.

• See also Problems with the COM API

	1 Quick Start
	1.1 What is PEAXACT AppServer?
	1.2 Getting Help
	User Manual
	Technical Support

	1.3 Installation & License Activation
	1.3.1 System Requirements
	1.3.2 Licensing
	1.3.3 Installation
	Step 1: Before You Install
	Step 2: Install PEAXACT
	Step 3: After Installation

	1.3.4 License Activation
	Online Activation
	Offline Activation
	Activation per API

	1.3.5 Configuration of the AppServer service
	Start Parameters
	One-time Start with Parameters
	Always Start with Parameters

	1.4 Before You Start

	2 Application Programming Interface (API)
	2.1 .NET API
	Target Framework
	Dependencies
	Deployment
	Backward Compatibility
	Support for Asynchronous Analyses
	Exception Handling
	2.1.2 Analyzer Class
	Notes
	Constructors
	Properties
	Methods

	2.1.3 AnalyzerOptions Class
	Constructors
	Properties

	2.1.4 Model Class
	Properties

	2.1.5 Sample Class
	Constructors
	Properties

	2.1.6 AnalysisResult Class
	Properties

	2.1.7 AnalysisType Enumeration
	Fields

	2.1.8 AnalysisResultType Enumeration
	Fields

	2.1.9 PeakPickingOptions Class
	Constructor
	Properties

	2.1.10 PeakPickingResults Class
	Properties

	2.1.11 McrOptions Class
	Constructors
	Properties

	2.1.12 McrResults Classs
	Properties

	2.1.13 HmfaOptions Class
	Constructors
	Properties

	2.1.14 HmfaResults Class
	Properties

	2.2 COM API
	Dependencies
	ProgID
	Backward Compatibility
	Dynamic Binding vs. Static Binding
	Exception Handling
	2.2.2 Analyzer Class
	Notes
	Constructors
	Properties
	Methods

	2.2.3 Model Class
	2.2.4 Sample Class
	Constructors
	Properties

	2.2.5 AnalysisResult Class
	Properties

	2.2.6 PeakPickingResults Class
	2.2.7 McrResults Class
	2.2.8 HmfaResults Class

	2.3 Programming Examples
	2.3.1 Using the .NET API in C#
	2.3.2 Using the .NET API in Python
	2.3.3 Using the COM API in VB Script
	2.3.4 Using the .NET API in MATLAB
	2.3.5 Dynamically bind to future versions of the AppServer assembly (.NET API)

	3 Custom Interfaces
	3.1 OPUS Process
	3.1.1 Prerequisites
	Software Requirements
	OPUS 7 Workaround
	Additional Files

	3.1.2 OPUS Configuration
	3.1.3 Modifying OPUS scenario file
	Important Notes
	At the beginning of the script, after Option Explicit add:
	At the beginning of sub-procedure Form_OnLoad() add:
	Customize <ModelFileName> to load your models
	At the very end of the script, add:
	Search and replace the placeholder script

	3.2 HoloPro
	3.2.1 Prerequisites
	Software Requirements

	3.2.2 Configuration

	4 Trouble Shooting
	Problems with the COM API
	Symptoms
	Resolution

	Problems with the HoloPro Custom Interface
	Symptoms
	Resolution

